• Новости
  • Наука
  • Физики впервые наблюдали тройную систему с чёрной дырой
Нейросеть

Физики впервые наблюдали тройную систему с чёрной дырой

Физики из Массачусетского технологического института и Калифорнийского технологического института впервые обнаружили тройную систему с чёрной дырой.

Исследование было опубликовано в журнале Nature. Эта система, известная как V404 Cygni, состоит из центральной чёрной дыры, которая поглощает близкую звезду.

Звезда движется по спирали вокруг чёрной дыры каждые 6,5 дня. Но самым неожиданным открытием стало то, что на большом удалении от этой системы находится ещё одна звезда, которая вращается вокруг чёрной дыры с периодом около 70 000 лет.

Это первый пример тройной системы с чёрной дырой, обнаруженной учёными. Для обнаружения этой системы физики использовали данные репозитория астрономических наблюдений Aladin Lite и проанализировали движения звёзд с помощью спутника Gaia.

Они заметили, что две звезды двигались синхронно, что указывало на их гравитационную связь с чёрной дырой. Такое тандемное движение имеет чрезвычайно низкую вероятность случайного совпадения, что подтверждает наличие тройной системы.

Учёные провели моделирование, чтобы понять, как могла образоваться эта система. Результаты показали, что наиболее вероятным сценарием формирования является прямой коллапс звезды, а не взрыв сверхновой.

Внешняя звезда в системе находится на стадии превращения в красного гиганта, что указывает на возраст системы. Учёные заключили, что системе около 4 миллиардов лет, что делает её одной из старейших известных тройных систем с чёрной дырой.

Это открытие ставит под сомнение традиционные представления о том, что большинство чёрных дыр формируются в результате мощных взрывов сверхновых. Прямая коллапсация может быть более распространённым процессом, и обнаружение тройной системы V404 Cygni даёт важные данные для изучения этого явления.

Как сказал один из спикеров: «Это открытие является важным шагом в понимании формирования и эволюции чёрных дыр. Мы продолжаем исследовать эту систему, чтобы узнать больше о её свойствах и процессах, которые привели к её образованию».


Учёные обнаружили пирен в межзвёздном облаке
Группа учёных из Массачусетского технологического института, Университета Британской Колумбии и обсерватории Грин-Бэнк сделала открытие: в далёком межзвёздном облаке TMC-1 обнаружен пирен.

Это может помочь понять, как углерод появился в Солнечной системе. Результаты исследования опубликованы в журнале Science.

Пирен — это большая углеродсодержащая молекула, которая относится к полициклическим ароматическим углеводородам (ПАУ). Если такие молекулы есть в межзвёздной среде, они могли внести свой вклад в обогащение нашей планетной системы углеродом.

Это особенно важно, учитывая, что пирен был найден на астероиде Рюгу. Молекула пирена симметрична, поэтому её сложно обнаружить с помощью радиоастрономии.

Чтобы обойти это ограничение, учёные искали изомер пирена — цианопирен. Он имеет характерный вращательный спектр, который можно зарегистрировать с помощью радиотелескопа.

Исследователи использовали радиотелескоп Грин-Бэнк (GBT) в Западной Вирджинии, чтобы найти цианопирен в облаке TMC-1. Анализ показал, что он составляет около 0,1% от общего количества углерода в облаке.

Это довольно много, учитывая, что в космосе есть тысячи других типов углеродсодержащих молекул. Обнаружение ПАУ в облаке с температурой около 10 кельвинов предполагает, что они могут формироваться при экстремально низких температурах.

Это может быть похоже на процессы, которые происходили в ранней Солнечной системе. Учёные давно обсуждают присутствие ПАУ в космосе, но раньше их можно было найти только косвенно.

Обнаружение пирена в облаке TMC-1 и метеоритах позволяет предположить, что ПАУ могли быть источником углерода для формирования планет и других тел в Солнечной системе. Теперь исследователи планируют искать более крупные молекулы ПАУ в облаке TMC-1, чтобы лучше понять, как они появились.


Нейросеть
Учёные выяснили опасность распространённого ингредиента пластика
Ученые Гарвардской медицинской школы провели исследование и выяснили, что распространённый ингредиент пластика — бензилбутилфталат (BBP) — может быть опасен для здоровья. BBP добавляют в пластик, чтобы сделать его более гибким и прочным.

Это вещество содержится во многих потребительских товарах, таких как упаковка для продуктов, средства личной гигиены и детские игрушки. Ранее уже было известно, что BBP может влиять на гормоны и репродуктивную функцию, но его конкретное воздействие на репродукцию оставалось неизвестным.

В новом исследовании учёные провели эксперименты на нематодах Caenorhabditis elegans, чтобы изучить влияние BBP на репродуктивные клетки. Они обнаружили, что при воздействии на нематод BBP вызывает окислительный стресс и разрывы ДНК в половых клетках, что приводит к клеточной гибели и образованию яйцеклеток с нарушенным числом хромосом.

Учёные отметили, что нематоды метаболизируют BBP так же, как млекопитающие, и подвергаются воздействию на аналогичных уровнях. Это делает их хорошей моделью для изучения влияния BBP на репродуктивную функцию у людей.

Кроме того, BBP нарушает процесс мейотической сегрегации хромосом, что также приводит к появлению яйцеклеток с неправильным числом хромосом. Это может иметь серьёзные последствия для репродуктивного здоровья и будущих поколений.

Авторы исследования подчёркивают, что их работа демонстрирует токсичность BBP для репродуктивной системы, особенно в условиях, которые аналогичны реальному воздействию этого химиката на организм человека.


Нейросеть
В Гонио нашли золотую памятную табличку, посвящённую Юпитеру Долийскому
В крепости Гонио, также известной как Апсарос, которая хорошо сохранилась и находится в Западной Грузии, недалеко от современной турецкой границы, археологи обнаружили золотую памятную табличку.

Это небольшая тонкая пластина размером с ладонь с рельефными украшениями и надписью на греческом языке. Табличка была посвящена Юпитеру Долийскому — божеству, популярному среди римских солдат.

С 2014 года здесь работает польско-грузинская археологическая экспедиция под руководством доктора Радослава Карасевича-Щипорского. Команда завершила очередной сезон раскопок.

Карасевич-Щипорский отметил, что рядом с находкой, вероятно, было место поклонения — храм, посвящённый Юпитеру Капитолийскому. Однако это божество отличается от официального римского Юпитера Капитолийского.

Корни культа Юпитера Долихенского уходят в восточные регионы современной Сирии и Турции. Причины популярности этого божества в римских военных кругах неясны.

Находка практически неповреждённого золотого предмета древности является уникальным событием. Возможно, военные не носили золото в повседневной жизни, но это не исключает наличия финансовых резервов в золоте у гарнизона или офицеров.

Археолог также напомнил о сокровищнице золотых изделий, найденной в Гонио в 1970-х годах, что косвенно подтверждает связь с гарнизоном и указывает на возможность того, что офицеры могли зарыть сундуки с золотом при особых обстоятельствах. Кроме золотой таблички, исследователи нашли другие предметы, указывающие на неполное понимание культа Юпитера Доличенского.

Среди них небольшие бронзовые статуэтки быка и орла, символизирующие Юпитера. Памятная табличка, оставленная на месте богослужения, приближает исследователей к поискам храма.

Возможно, в ближайшие годы они найдут его остатки. Также были раскопаны древнеримские гончарные печи, использовавшиеся для обжига амфор — сосудов для хранения вина.

Рядом с печами обнаружили винный пресс, что позволяет предположить, что местное вино могло экспортироваться в этих амфорах для использования римскими военными. Основываясь на этих находках, Карасевич-Щипорский заявил, что команда считает, что в древнеримском форте происходило крупномасштабное производство керамики и вина, что нетипично для военных.

Вероятно, мастера работали в форте в отсутствие солдат и были вывезены при их возвращении.


Нейросеть
В космосе обнаружены крупные органические молекулы
В холодном газовом облаке, которое, возможно, стало колыбелью Солнечной системы, обнаружены сложные органические молекулы, состоящие из углерода и водорода.

Это открытие имеет большое значение, так как указывает на то, что эти молекулы могли сохраниться до формирования Земли. Одной из обнаруженных молекул является пирен — полициклический ароматический углеводород (ПАУ), который состоит из колец углеродных атомов.

Химический состав углерода является основой жизни на Земле, поэтому обнаружение ПАУ в космосе важно для понимания возникновения жизни на нашей планете. Хотя известно о множестве крупных ПАУ в космосе, конкретные виды оставались неизвестными.

На сегодняшний день пирен считается самым крупным ПАУ, найденным в космосе и состоящим из 26 атомов. Ранее считалось, что такие молекулы не могут выжить в экстремальных условиях звездообразования, где мощное излучение разрушает сложные молекулы.

Однако учёные обнаружили значительное количество пирена в образцах с астероида Рюгу, что предполагает возможность их существования в космосе. Команда исследователей использовала телескоп Green Bank для изучения молекулярного облака Тельца (TMC-1) в созвездии Тельца.

Они обнаружили 1-цианопирен — индикатор пирена, который образуется при взаимодействии пирена с цианидом, распространённым в межзвёздной среде. Количество обнаруженного пирена в молекулярном облаке Тельца позволяет предположить, что в холодных тёмных молекулярных облаках содержится много пирена, который впоследствии участвует в формировании звёзд и солнечных систем.

Исследователи объясняют, что это открытие постепенно собирает картину развития жизни на Земле, которая свидетельствует о том, что жизнь пришла из космоса — по крайней мере, сложные органические молекулы, необходимые для её формирования. Простые одноклеточные организмы появились на Земле более 3,7 миллиарда лет назад, когда поверхность планеты остыла до такой степени, что сложные молекулы перестали испаряться.

Однако для столь быстрого появления простых организмов времени для химических процессов было недостаточно, чтобы начать с простых молекул из двух или трёх атомов. Новое открытие 1-цианопирена в молекулярном облаке Тельца показывает, что сложные молекулы способны выживать в суровых условиях Солнечной системы.


Новости по теме